Datos de transporte de la OCDE en R

«OCDE» es un paquete en R que proporciona una interfaz para realizar una consulta directamente desde el código R. En esta publicación utilizo el paquete «OCDE» para analizar los datos de transporte europeos.

Comienzo leyendo en el paquete OECD en R. Contiene una función «search_dataset» y quiero leer lo que puede hacer:

library(OECD)
?search_dataset

«search_dataset» nos permite buscar conjuntos de datos, en función de una cadena de búsqueda proporcionada a la función como primer parámetro. «search_dataset» devolverá un marco de datos como salida de retorno. Usemos la función para encontrar un conjunto de datos que contenga datos de transporte interesantes.

head(search_dataset("transport"))
##                          id
## 80             AIRTRANS_CO2
## 385                    ETCR
## 452                     MTC
## 482            CIF_FOB_ITIC
## 900 ITF_PASSENGER_TRANSPORT
## 934     ITF_GOODS_TRANSPORT
##                                                                       title
## 80                                              Air Transport CO2 Emissions
## 385                 Regulation in energy, transport and communications 2013
## 452                                                Maritime Transport Costs
## 482 International Transport and Insurance Costs of Merchandise Trade (ITIC)
## 900                                                     Passenger transport
## 934                                                       Freight transport

Para el artículo de la publicación en cuestión, quiero usar el conjunto de datos «ITF_GOODS_TRANSPORT» (transporte de mercancías). Lo consulto usando la función «get_data_structure»:

data_struct <- get_data_structure("ITF_GOODS_TRANSPORT")
typeof(data_struct)
## [1] "list"

Veamos el contenido de la lista:

str(data_struct)
## List of 9
##  $ VAR_DESC       :'data.frame': 9 obs. of  2 variables:
##   ..$ id         : chr [1:9] "COUNTRY" "VARIABLE" "YEAR" "OBS_VALUE" ...
##   ..$ description: chr [1:9] "Country" "Variable" "Year" "Observation Value" ...
##  $ COUNTRY        :'data.frame': 58 obs. of  2 variables:
##   ..$ id   : chr [1:58] "ALB" "ARG" "ARM" "AUS" ...
##   ..$ label: chr [1:58] "Albania" "Argentina" "Armenia" "Australia" ...
##  $ VARIABLE       :'data.frame': 14 obs. of  2 variables:
##   ..$ id   : chr [1:14] "T-GOODS-TOT-INLD" "T-GOODS-RL-TOT" "T-GOODS-RD-TOT" "T-GOODS-RD-REW" ...
##   ..$ label: chr [1:14] "Total inland freight transport" "Rail freight transport" "Road freight transport" "Road freight transport for hire and reward" ...
##  $ YEAR           :'data.frame': 49 obs. of  2 variables:
##   ..$ id   : chr [1:49] "1970" "1971" "1972" "1973" ...
##   ..$ label: chr [1:49] "1970" "1971" "1972" "1973" ...
##  $ OBS_STATUS     :'data.frame': 16 obs. of  2 variables:
##   ..$ id   : chr [1:16] "c" "B" "C" "D" ...
##   ..$ label: chr [1:16] "Internal estimate" "Break" "Non-publishable and confidential value" "Difference in methodology" ...
##  $ UNIT           :'data.frame': 316 obs. of  2 variables:
##   ..$ id   : chr [1:316] "1" "GRWH" "AVGRW" "IDX" ...
##   ..$ label: chr [1:316] "RATIOS" "Growth rate" "Average growth rate" "Index" ...
##  $ POWERCODE      :'data.frame': 32 obs. of  2 variables:
##   ..$ id   : chr [1:32] "0" "1" "2" "3" ...
##   ..$ label: chr [1:32] "Units" "Tens" "Hundreds" "Thousands" ...
##  $ REFERENCEPERIOD:'data.frame': 92 obs. of  2 variables:
##   ..$ id   : chr [1:92] "2013_100" "2012_100" "2011_100" "2010_100" ...
##   ..$ label: chr [1:92] "2013=100" "2012=100" "2011=100" "2010=100" ...
##  $ TIME_FORMAT    :'data.frame': 5 obs. of  2 variables:
##   ..$ id   : chr [1:5] "P1Y" "P1M" "P3M" "P6M" ...
##   ..$ label: chr [1:5] "Annual" "Monthly" "Quarterly" "Half-yearly" ...

Los datos proporcionados por la OCDE tienen muchas dimensiones. Es por eso que utilicé get_data_structure: para comprender las dimensiones y la estructura de los datos proporcionados en el conjunto de datos «ITS_GOODS_TRANSPORT».

Procedamos a consultar el conjunto de datos real, aplicando los filtros pertinentes. Para esto, utilizo la función «get_dataset» proporcionada por el paquete R «OCDE»:

data_df <- as.data.frame(get_dataset(dataset = "ITF_GOODS_TRANSPORT")) 
head(data_df)
##   COUNTRY       VARIABLE TIME_FORMAT  UNIT POWERCODE obsTime obsValue
## 1     MKD T-CONT-SEA-TON         P1Y TONNE         3    1970       NA
## 2     MKD T-CONT-SEA-TON         P1Y TONNE         3    1971       NA
## 3     MKD T-CONT-SEA-TON         P1Y TONNE         3    1972       NA
## 4     MKD T-CONT-SEA-TON         P1Y TONNE         3    1973       NA
## 5     MKD T-CONT-SEA-TON         P1Y TONNE         3    1974       NA
## 6     MKD T-CONT-SEA-TON         P1Y TONNE         3    1975       NA
##   OBS_STATUS
## 1          M
## 2          M
## 3          M
## 4          M
## 5          M
## 6          M

Filtremos algunos subconjuntos de datos relevantes:

backup_df <- data_df
library(dplyr)
colnames(data_df) <- c("country","variable","timeformat","unit","powercode","obsTime","obsValue","obsStatus")
data_df <- dplyr::filter(data_df,country=="DEU") # filter for Germany only
data_df <- dplyr::filter(data_df,timeformat=="P1Y") # filter for annual values only
data_df <- dplyr::filter(data_df,unit=="TONNEKM") # filter for figures in tonne kilometres only

data_df <- data_df[is.na(data_df$obsStatus),]

unique(data_df$variable)
## [1] "T-GOODS-RL-TOT"   "T-GOODS-RD-REW"   "T-GOODS-TOT-INLD" "T-GOODS-PP-TOT"  
## [5] "T-GOODS-IW-TOT"   "T-GOODS-RD-TOT"   "T-SEA-CAB"        "T-GOODS-RD-OWN"

Hicimos subconjuntos en gran medida, pero el marco de datos restante todavía tiene diferentes variables. Si queremos comprenderlos en detalle, debemos volver al objeto de estructura, es decir, el objeto «data_struct»:

data_struct$VARIABLE
##                  id                                      label
## 1  T-GOODS-TOT-INLD             Total inland freight transport
## 2    T-GOODS-RL-TOT                     Rail freight transport
## 3    T-GOODS-RD-TOT                     Road freight transport
## 4    T-GOODS-RD-REW Road freight transport for hire and reward
## 5    T-GOODS-RD-OWN      Road freight transport on own account
## 6    T-GOODS-IW-TOT         Inland waterways freight transport
## 7    T-GOODS-PP-TOT                        Pipelines transport
## 8         T-SEA-CAB      Coastal shipping (national transport)
## 9             T-SEA                         Maritime transport
## 10    T-CONT-RL-TEU            Rail containers transport (TEU)
## 11           T-CONT                       Containers transport
## 12    T-CONT-RL-TON         Rail containers transport (weight)
## 13   T-CONT-SEA-TEU        Maritime containers transport (TEU)
## 14   T-CONT-SEA-TON     Maritime containers transport (weight)

Esto significa que no solo tenemos cifras para el transporte de carga en total, sino que tenemos cifras por subcategorías relevantes. Usaremos esto para un análisis más detallado en otras publicaciones. En este post queremos seguir analizando el transporte terrestre total de mercancías.

El siguiente gráfico visualiza las series temporales del total de toneladas-kilómetros de transporte terrestre de mercancías [TONNEKM] en millones (código de potencia 6) para Alemania:

library(ggplot2)
ggplot(filter(data_df,variable=="T-GOODS-TOT-INLD")) + 
  geom_col(mapping = aes(x=as.numeric(obsTime),y=obsValue),fill="black") +
  ggtitle("Total inland freight transport development in Germany [OECD data]") +
  xlab("year") +
  ylab("in millions of TONNEKM")

Además del paquete R de la OCDE, también puede consultar el paquete fredr en R. Fredr es otro paquete R para acceder a datos económicos públicos, que proporciona acceso a la base de datos FRED.

You May Also Like

Leave a Reply

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.